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A general numerical method is described for the solution of linear elliptic and parabolic 
partial differential equations in the presence of boundary singularities. The method is 
suitable for use with either a finite-difference or a finite-element scheme. Modified approxi- 
mations for the derivatives are developed using the local analytical form of the singularity. 
General guidelines are given showing how the local analytical form can be found and 
how the modified approximations can be developed for many problems of mathematical 
physics. These guidelines are based on the reduction of the differential equation to the form 
du = gu + f- The potential problem treated by Motz and Woods is taken as a numerical 
example. The numerical results compare favorably with those obtained by other techniques. 

1. INTRODUCTION 

The problem of boundary singularities in the numerical solution of elliptic and 
parabolic partial differential equations has received a great deal of attention. These 
singularities arise when sudden changes occur either in the direction of the boundary, 
as at a re-entrant corner, or they may be associated with mixed boundary conditions. 
Such singularities are found in a wide variety of physical problems, e.g., stress analysis 
in regions with cracks, discontinuities, point sources, etc. 18, 14, 431, flow around an 
obstacle [ 181, seepage through a dam [ 11, heat flow, diffusion or potential problems in 
regions with re-entrant corners, electrodes, heat sources or sinks [3-7, 1 l-l 519-25, 
27, 30-39, 421. 

Special numerical schemes have been devised to obtain accurate solutions near 
boundary singularities without a large amount of computation. Some authors have 
used mesh refinement near the singularity 17, 12, 19, 32, 36,391 and others have 
derived modified approximations to the governing differential equation and its 
solution near the singularity by using the local analytical form of the singularity, e.g., 
as in the Motz method [3-6, 8, 11, 14, 15, 17,21, 35, 37,42,43]. Either approach 
may be part of, and dovetail readily into, a global finite-difference or finite-element 
scheme. The analytical forms needed for the second approach require some prior 
analysis but usually are readily available in the form of an asymptotic expansion by 
separable-variable [4, 17, 28,431 or complex variable [20,22,40,41] techniques. 
Alternative methods based on conformal transformations [23, 24,291, modified 
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integral equations [31], modified collocation [29], power series [22], dual series [38], 
and removal of the singularity [34,40-42] have been proposed. 

In the following sections a new way of developing such modified approximations is 
given for differential equations of elliptic and parabolic type. The novel feature is that 
modified approximations for the derivatives in the governing equation are developed 
and take the place of the algebraic equations for the solution values as originally 
used by Motz [21]. The method is applied to the potential problem of Motz [21] and 
Woods [42]. 

2. LOCAL ANALYTICAL FORMS FOR BOUNDARY SINGULARITIES 

Separable-variable solutions for second-order equations of the form 

p.g=M-f, (2.1) 

where Q = 0, 1, or - 1 and u, g, f are functions of xi only, and satisfying fairly 
general boundary conditions, have been given by Fox and Sankar [16, 171 for the 
case n = 2. These results may be summarized as 

u = Mf, 4 + f ci$& e), (2.2) 
i=l 

where the ci are arbitrary constants, p, 8, are local polar coordinates centered on the 
boundary singularity. Each $&J, 0) is a linear combination of terms, some of which 
are singular, like 

PafiAgi,i(e) or (2.3) 

where 01 is found by fitting the boundary conditions; A, B are trigonometric terms 
obtained from a sequence of ordinary differential equations with constant coefficients, 
e.g., for the first of (2.3) 

A,“,, + (a + 1) A,,1 = 0, 
(2.4) 

A,“,m+2 + (a + m + 212 Aoi.m+2 = - jt gm-j4x.j9 m = 0, 1, 2,.-. . 

The presence of a nonzero f in (2.1) merely adds known terms to (2.2). Corresponding 
results for the time-dependent case of (2.1) are given in Bell [4]. An alternative way of 
expanding ZJ is to split it into a well-behaved part plus a small number of singular 
terms as proposed by Woods [42] and used by Benzley [7] and Emery and Segedin 
[14, 151. 
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For more-general, second-order elliptic and parabolic equations of the form 

where Aik , Bi , C, D are functions Of Xi alone, the above techniques could be extended 
to cover the first- or cross-derivative terms; e.g., see Sankar [28] or Zak [43]. However, 
the presence of such terms, particularly if nonconstant coefficients are also present, 
considerably complicates the corresponding equation in polar coordinates and the 
sequence of equations for the functions of 6’ in (2.4). A more convenient way of 
proceeding is to reduce the general equation (2.5) to the simpler form (2.1) by trans- 
formations of the coordinates Xi to xi and of the unknown function U to u and then 
seek a separable-variable solution. First, (2.5) is reduced to the canonical (normal) 
form 

(2.6) 

where K~ = 0, 1, or - 1, and bi , c, d are functions of Xi , by the transformation of 
coordinates. 

xi = xi(xl P x2 3*--9 xn>~ i = 1, 2,..., n; (2.7) 

see Courant and Hilbert [lo, Chap. III, and p. 3501. Equation (2.6) is then reduced to 
form (2.1), which contains no first-derivative terms, by using the exponential trans- 
formation of Sankar [28] 

u = U exp k .i S bi dxi . 
I 2=1 I 

(2.8) 

A similar transformation was given by Courant and Hilbert [lo, p. 1831 for the case 
when the bi are constant. 

Examples of such transformations have been given by 

(i) Courant and Hilbert [lo, p. 1621 for Tricomi’s equation (of special interest 
in high-velocity gas flows; Bers [9]). 

(ii) Crank and Furzeland [ll] for axially symmetric diffusion problems in- 
volving the numerical quadrature of a line integral across a singularity at the edge 
of a disk-shaped electrode (see also Duncan [13]). 

(iii) Fox and Sankar [17] for the vortex theory of screw propellors. 

3. DEVELOPMENT OF MODIFIED APPROXIMATION NEAR THE SINGULARITY 

As an example, consider the two-dimensional, elliptic case of (2.5) and assume that 
it is of such a form that it can be reduced using transformations (2.7) and (2.8) to the 
form 

(3.1) 

5W26/3-3 
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where the transformation between U and u is given by, say, 

u = L[u]. (3.2) 

Form (3.1) is most convenient for the analytical development of the modified approxi- 
mations and keeps the number of derivative approximations needed to a minimum; no 
numerical computations with (3.2) are needed. 

Assume that an analytical solution of form (2.2), valid near the boundary singu- 
larity at point 0, has been found. Taking the first N terms of (2.2) an approximation 
for U, valid near 0, is 

u*(P, fl> = Al@, @ + 2 c&p, 0). (3.3) 
i=l 

and the corresponding approximation for U is defined by 

u*(Ps @ = m*(PP, e)l = &J@, 6) + f c&p, 6). 
i=l 

(3.4) 

A neighborhood N(0) near the singularity is chosen, and standard finite-difference or 
finite-element approximations are used for U and its derivatives in (2.5) for points 
outside N(0). For points in N(O), modified approximations for u and its derivatives in 
(3.1) are developed which take into account the nature of the singularity and these are 
in turn related to U values inside N(0). The derivatives are approximated using the 
standard differential relations 

a2u sin 28 a2u sin2 19 a2u sin2 e i3.i -= -- 
ax2 

co9 e e - 
aP2 -ap+$P2+ P p ap+ y;, (3.5) 

a% + ~02 9 azu + ~0s~ e au pu _ sin2 e 3 + sin 28 
-- 

w aP2 P ap ae p23iP 
-_ _ +j%, (3.6) 

P aP 

where approximations for the p and 0 derivatives are obtained by differentiating (3.3). 
Thus approximations for (3.5) and (3.6) can be expressed as 

azu* 
-E.z 

a2 WcdP, 6 + f GWdf, 0) (3.7) 
i=l 

with truncation error O(P~-~), 
a%* 
__ = 

w 
%‘(P, 6) + i Wi’co, 6) (3.8) 

id 

where A4 is the highest power of p in the &(p, 0) of (3.3). 
The wi , wi’ are readily found by following the above steps and the symmetry in 

(3.5) and (3.6) leads to symmetry between the wi and wi) (see the example in Section 4). 
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The Nunknown constants ci are approximated by fitting (3.4) to the set of U values 
(Vi : j = 1, 2,..., N} at N points in and near N(0). More than N points can be used if 
a best-fit (e.g., least squares) technique is used. For each point 12, say, in N(0) the same 
set of points for the {Uj) values can be used. In this case the set usually consists of 
points just outside N(O), called “far” points; Motz [21]. Alternatively, a different set 
of points for each point n can be used. In this case the set usually consists of points 
surrounding the point n; Bell and Crank [6]. 

The proposed method is a variation of the latter type in that a different set of 
points is used for each x and y derivative for each point’n. The method is illustrated by 
developing a modified five-point formula for the typical point 1 in N(0); see Fig. 1, 
To construct a five-point formula approximations (3.3) and (3.4) are used with 
N = 3. Referring to Fig. 1, and denoting Uj*, pj , ei to be the corresponding U*, p, 0 

N(O) 

FIGURE I 

values at the points j = 1 to 5, then the most obvious choice of pointsIt approximate 
the unknown constants ci in (3.7) for a2u*/ax2 1 point 1 is to use points j = 1,2, 3 in the . 
horizontal direction. Using (3.4) this gives for the ci the three equations 

whose solution can be denoted by 

Cg = Ai + BiUz* $ C’iUi* + DiUs*y i =,l, 2, 3. (3.10) 

Similarly, for the ci in (3.8) for iY2u/ay2 1 point 1 , points 4, 1, and 5 in the vertical 
direction are used and the solution is denoted by 

Ci = Ai f Blue* + Ci’Ul” + Di’U.r,*y i = 1, 2, 3. (3.11) 

Substituting (3.10) and (3.11) in (3.7) and (3.8), and using (3.3) with the ci given by 
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(3.10) for the term g(x, y) u in (3.1), gives the following five-point approximation for 
(3.1) at the typical point 1 in N(0): 

a2u* a2u* -+--- 
ax2 ayv” g” * - f’= e2U2* -t e3U3* + ealJ4* + e,U,* + elUl* + e, = 0, 

where 

e, = i [G(Wi - gqbi) + Wi'G'I, 
is1 

e3 = E Di(wi - &), 
i=l 

(3.13) 

e, = 5 w,‘B,‘, 
i=l 

e5 = i wilDi’, 
i=l 

e6 = w. + w,’ + 5 [Ai(w, - g&) + Ad’Wi’l - & -f. 
i=l 

The functions wi , wi, & , g, and fare evaluated at the point (pl, 0,). If the original 
differential equation (2.1) is equivalenced (via the zero right-hand side) to the reduced 
equation (3.1) then (3.12) represents a five-point approximation to the original 
equation which can be incorporated in either a finite-difference or a finite-element 
scheme. 

The general way of writing approximations (3.7) and (3.8), so that the neighboring 
points chosen to approximate the ci need not be on the same horizontal or vertical 
line, is useful in developing higher-order, multipoint modified approximations. It 
allows the number of terms included in the truncated series expansion, and the set of 
neighboring points used for any one point in N(O), to be varied. The neighborhood 
N(O) can include points away from 0 as long as approximations (3.3) and (3.4) remain 
valid (this may be checked as described in Motz [21]). The optimum size of N(0) can 
be determined by comparison of the discretization error in the standard approxima- 
tions used outside N(0) with the truncation error in (3.7) and (3.8); see Section 4. 

Five-point “molecules” differing from the one given in Fig. 1 are needed for points 
in N(0) which involve the boundary. Two problems can arise. The first is that some of 
the five points required may, depending on the geometry of the problem, lie outside the 
region of solution. The second is that the values of &@, 6) at the point Gj , Si) may 
all be zero so that solutions to (3.9) for the ci cannot be found. The remedy for both 
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problems is simply to choose alternative points near (pj, 0,) giving a new five-point 
molecule; e.g., see Section 4, Fig. 4-7. 

The method can be extended to the parabolic, time-dependent case since the form 
of the boundary singularity depends on the space coordinates rather than on the time 
coordinate. Thus seeking a separable-variable solution one finds that the time- 
dependent form of (3.3) can be expressed as 

u*cp, 0, 0 = MP, 6 0 3 f m ~i(P, e>, (3.14) 
i=l 

and so the above methods can be applied with the ci being reevaluated at each time 
level; see Bell and Crank [4-61. 

4. APPLICATION OF THE METHOD TO THE PROBLEM OF MOTZ AND WOODS 

The problem of Motz [21] requires the solution of Laplace’s equation in a rectangle 
with a slit, i.e., a re-entrant corner of internal angle 27r. It has been treated by many 
authors to demonstrate the effectiveness of their singularity treatments. Woods [42] 
gave an alternative formulation based on the fact that u - 500 is antisymmetric about 
the line BE containing the slit and, by imposing the boundary condition u = 500 
on EO, only needed to consider the top half of the rectangle (Fig. 2). Tt is in this form 
that the problem is treated in the literature [3, 19, 22, 23, 32, 35-391. 

-------+ 
E 

0 
B x 

LIZ500 all - =o 
3Y 

FIGURE 2 

Examples of such singularities occur in potential problems concerning transmission 
lines with microstrips (Daly [12]) and in diffusion problems with narrow-band-type 
electrodes (Saito [27]). Since the governing Laplacian equation is already in the simple 
form (2.1) with g = f = 0 there is no need for a transformation of coordinates or an 
unknown function. (For an application of the method to a problem where such a 
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transformation is necessary see Crank and Furzeland [ 1 I].) In the Woods formulation 
the singularity is associated with the mixed boundary conditions 

a2.4jay = 0, x > 0;u = 500, x,<Oony=O. (4.1) 

A separable-variable solution of the polar coordinate form of Laplace’s equation 
yields the local analytic form 

02 
u = 500 + 2 @-I'/2 cos (2i - 1) (j 

i=l 2. 

The problem of Fig. 2 is scaled by setting 

(0 u = u - 500, 
(ii) B = (1, 0); C = (I, I); D = (-1, I); E = (-1, 0), 

(4.2) 

(4.3) 
(4.4) 

and standard five-point finite-difference approximations are used for the discretized 
region of Fig. 3 with 6x = Sy = h. To enable comparisons the choice of discretization 
follows that of Motz and Woods, although this choice results in unequal intervals 
near the edges and so the discretisation error is only O(h) for these points. For points 

0u.. 5Y-O U.1000 

5426 552.8 578.5 & .5413-q 743.6 Pg 848.4 9497 

693.7 728.5 827.3 844.4 943.5 948.9 .____..e 
(-1.0) E 0 728.2 P, 8434 9484 B(l.0) x 

u.500 au - :o 
a, 

FIG. 3. Tabulation of values of u from the problem of Fig. 2. DC = EB = 2 units; DE = 
BC = 1 unit; 6x = Sy = 217 (except near ED, DC, CB). Key: 

Finite-difference solution, no singularity treat- Conformal transformation 
ment Papamichael and Whiteman [29]. 

solution, 

Crank and Furzeland modified formulas at 
points PI-P4 . 
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involving the Neumann boundary condition the usual central-difference approxima- 
tions for the derivatives are used in conjunction with fictitious points. Figure 3 
compares the numerical solution obtained using these standard finite-difference 
approximations with the highly accurate results produced by the conformal trans- 
formation method of Papamichael and Whiteman [23]. The results show that a high 
degree of inaccuracy occurs near the singularity and illustrate the fact that inaccuracies 
spread throughout the entire region, called “the pollution effect” [2]. Instead of 
applying the standard finite-difference approximations throughout the entire region, 
a neighborhood N(0) near the singularity is chosen and for points in N(0) modified 
approximations are developed which take into account the nature of the singularity 
given by (4.2). Following Section 3 the derivative approximations (3.7) and (3.8) with 
N = 3 lead to the modified five-point 

g =f= 0, e, = 0, 

cos $8 
w1=-4p312; 

w _ 3 cos +e . 
z- 4112 9 P 

M’3 = 15p1’2 cos +e . 
4 ’ (4.5) 

WC' = -wi ) i = 1, 2, 3. 

The approximate size of N(0) can be determined by noting that the discretization 
error in the standard five-point approximations to Laplace’s equation is O(h2), 
whereas it is easily verified that the modified approximations based on (3.7) and (3.8) 
with N = 3 contain a truncation error of O(p3i2). Thus application of the modified 
approximations is advantageous as long as the truncation error does not exceed the 
discretization error. An approximate rule is then to choose N(0) such that the maxi- 
mum p value in N(O), pmax , say, is such that pg$ is of the same order of magnitude as 
h2. Practical experience suggests that pmax 3/2 < 5h2 is a useful guide. In practice only a 
few points in N(0) are needed. 

Referring to Fig. 3, the four immediately neighboring points PI , P2 , P, , and P4 
around 0 are chosen for N(0) since here pgix = 0.26 and h2 M 0.08. This choice of 
points is similar to that used by Motz and Woods and enables comparisons to be 
made with their results. Modified approximations of forms (3.12) and (4.5) are applied 
at points inside N(0) and standard finite-difference approximations are used for points 
outside N(0). The results obtained are comparable with those of Motz and Woods and 
give good agreement with the conformal transformation values of Papamichael and 
Whiteman [23], which are generally accepted to be of high accuracy. 

Five-point “molecules” differing from that given in Fig. 1 are needed for points in 
N(0) which involve the boundary. Five-point molecules for points to the left of 0 on 
y = Sy involve points on y = 0 for which 0 = rr. The fact that 8 = TI means that, by 
comparing (4.2) with (3.9), each of the #‘J, 0) is zero and thus solutions to (3.10) 
cannot be found. Suggested alternatives are given in Figs. 6 and 7. The first point on 
the right of 0 on y = 0 also involves a point for which f3 = n. Further, there is no 
y - 6y level, and so an alternative molecule such as that given in Fig. 4 is used. The 
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FIGURE 5 FIGURE 6 

1.4482 -4.0000 1.5052 

0 x 0 x 

FIGURE 7 FIGLJRE 9 

0.8942 -4.0000 0.8926 

9 

Note. The figures below the nodes represent the values of ei in (3.12) for points PI%. These 
values are for 0 = u - 500 values; see (4.3). 

general form of the modified approximations allows for any combination of five 
neighboring points provided 9 # rr. 

The values of the et in (3.12) are given in Fig. 4-7 for the points PI-P4 with h = 2/7. 
The values given have been scaled so that e, = -4.0000. 
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